Evolution of Sllica Biomineralizing Plankton

○○○••・ロロ PlanktonTech

Benjamin Kotrc \& Andrew H. Knoll Harvard University
>Research aims
>How and why silica use in marine microplankton has changed through evolutionary time
-Elucidate evolutionary strategies and mechanisms by documenting changes in morphology of siliceous skeletons

>Projects

1: Empirical, discrete character based diatom morphospace
2: Quantifying radiolarian silicification in Cenozoic evolutionary lineages

Diatom morphospace: What's a morphospace?

>An n-dimensional space encompassing the possible shapes a group of organisms can take, where each of the n axes represents some character

Each point in the space represents the morphology of an organism
Theoretical morphospaces are "n-dimensional geometric hyperspaces produced by systematically varying the parameter values of a geometric model of form" (McGhee, 1991)
\Empirical morphospaces are "multidimensional morphological spaces produced from the mathematical analysis of actual measurement data" (McGhee, 1991)
>Morphospaces provide bridge between plankton diversity and functional morphology (e.g. Hamm, 2003)

Diatom morphospace: Our approach, discrete characters

Diatom morphospace: Using unbiased terminology

"striae"
Decussate-punctate, lineolate, radiate, alveolate, transverse and longitudinal, transverse and oblique, punctate, alveolate...

Tangential (straight rows or curved concave rows), radial (with secondary rows in spirals, fasciculate, curvatulus),...

Character				
Shape of structural pattern center of primary silica ribs	Ring-shaped principal rib (annulus)	Linear principal rib (sternum)		
Packing/coordination of pores	Hexagonal	Square	Scattered irregularly	
If hexagonal, arrangement of pores	In straight rows (for centrics, lineata-type tangential areolation; for pennates, decussate-punctate and tranverse-oblique striate)	In straight rows, but collected in radial bundles (radial fasciculate)	In curved rows, collected in radial bundles with curved edges (radial fasciculate, curvatulus type)	With secondary rows in spirals
If square or in rows, orientation of pore rows relative to structural pattern center	Orthogonal to structural pattern center/sternum (for centrics, radial areolation; for pennates, transverse and longitudinal striae)	Orientation variable along pattern center	In rows concave towards margin (eccentrica type) pattern center, parallel to one edge of the valve	
If arrangement of pores variable along pattern center, angle with pattern center in the middle of the diatom	Orthogonal	Divergent (radiating)	Convergent	
If arrangement of pores variable along pattern center, angle with pattern center at the apices of the valve	Orthogonal			

Radiolarian silicification: Assemblage-level evolution

Radiolarian silicification: Evolution within lineages?

Radiolarian silicification: Lineages chosen for study

Didymocyrtis-Diartus

Lithocyclia angusta, Didymocyrtis prismatica, Didymocyrtis violina, Didymocyrtis laticonus, Didymocyrtis mammifera, Didymocyrtis antepenultima, Didymocyrtis penultima, Didymocyrtis tetrathalamus, Didymocyrtis avita, Diartus petterssonii, Diartus hughesi

Artophormis

Artophormis barbadensis, Artophormis gracilis

Stichocorys

Stichocorys delmontensis, Stichocorys peregrina, Stichocorys wolffii

Centrobotrys

Centrobotrys gravida, Centrobotrys
petrushevskayae, Centrobotrys thermophila

Phormocyrtis

Phormocyrtis striata striata, Phormocyrtis striata exquisita

Radiolarian silicification: Storing data in relational databases

-Flat file databases (like Excel) store all data in one table of rows and columns -Relational databases (like SQL) store data in many tables; each table holds data related to a particular entity type, the columns describing its attributes
-Avoid duplication of data (e.g. recording latitude for each measurement)

- Avoid errors in data entry, manipulation (information is in one place only)
- Efficient storage
- Easy to bring data into new and unanticipated relationships

Radiolarian silicification: Storing data in relational databases

-Flat file databases (like Excel) store all data in one table of rows and columns -Relational databases (like SQL) store data in many tables; each table holds data related to a particular entity type, the columns describing its attributes

- Avoid duplication of data (e.g. recording latitude for each measurement)
- Avoid errors in data entry, manipulation (information is in one place only)
- Efficient storage
- Easy to bring data into new and unanticipated relationships

Radiolarian silicification: Measurement protocol \& interface

Other projects: CLSM and FIB-SEM of diatoms

Tested a number of fluorescent dyes with diatoms, identified good dye

- Measurement too time-intensive to adequately sample morphospace through time

Calcofluor

Ruthenium red

Fluorescein

Epoxy died with fluorescein

Fluorescein Na salt
(\rightarrow video)

Developed protocol for measuring diatom silicification using FIB-SEM

- Again, too time-intensive to quantify assemblage-level silicification through time

Conclusion: Outlook

>Diatom morphospace

- Coding of character states for 147 characters in 128 genera underway

PRadiolarian lineages

- Measurement of five lineages in 101 ODP samples underway

>Further projects

- Uncovering the true diversity history of diatoms - correcting for variable sampling intensity through time, effects of geographic structure of diversity, relative abundance distributions, and the environmental context

>Timeline

- Expect projects to be completed in next 14 months

