
PROGRAMMING FOR HUMANISTS

STUART M. SHIEBER

Contents

Part 1. Programming by imitation 2
1. Where we’re headed 4
2. Installing Python 5
3. The synoptic gospels 6

Part 2. Programming from first principles 14
4. Python documentation 15
5. The Python interpreter 16
6. Expressions and nesting 18
7. Variables and the naming of values 19
8. Sequence data types 20
9. Functions 27
10. Words, types, and tokens 31
11. Files 32
12. Special characters 34
13. Splitting and joining strings 35
14. List comprehensions 37
15. Sets 39
16. Calculating with n-grams 40
17. Defining your own functions 41
18. Dictionaries 46
19. Loops and conditionals 48
20. A concordance 52
Appendix A. A concordance with description 55
Appendix B. Statistics 61
References 62
Index 63

1

2 STUART M. SHIEBER

Part 1. Programming by imitation 1

These notes are intended to provide an introduction to programming in the 2

programming language Python for an audience of techno-savvy humanities schol- 3

ars who are primarily interested in the use of computers for performing simple 4

analyses of text. I originally prepared them for an audience of historians and 5

philologists of premodern Europe, and the notes may reflect that audience, but 6

should be appropriate for scholars from other disciplines as well. 7

There are two ways to learn a new language: by imitation and from first princi- 8

ples. This holds for both natural languages and programming languages. Under 9

the imitation approach, learners see some examples and generate new examplesimitation 10

by replacing parts of expressions they’ve seen. This approach has the benefit of 11

allowing learners to use the language in interesting ways from early on, but they 12

may do so without a full understanding of why the things they are saying work the 13

way they do. Under the first principles approach, learners study the elementaryfirst principles 14

units of the language and how they are composed – the lexicon, grammar, and se- 15

mantics of the language – and construct new examples from these first principles. 16

This approach has the benefit that at every step the learner understands why the 17

expressions work the way they do, but it may take a while to get to the point of 18

being able to use the language to do much that is worthwhile. 19

For natural languages, the imitation approach is undoubtedly the preferred 20

method. The lexicons and grammars of natural languages are large and complex 21

and not well understood. Further, human beings have an ability to learn natural 22

languages through immersion that allows even very young children to acquire a 23

natural language with no explicit training in the first principles. Finally, the agents 24

that understand natural languages are quite forgiving in their behavior. Fluent 25

speakers can understand disfluent speech. So imperfections in the imitations 26

don’t have to hold up communication too much. 27

For programming languages, the case is somewhat different. Programming 28

languages are artificial languages, and thus we cannot rely on innate language 29

learning abilities. Furthermore, the agents that understand programming lan- 30

guages, computers, are quite unforgiving in their behavior. Even the most trivial 31

variance from the well-formedness principles of the language may be met with 32

utter failure to communicate the programmer’s intent to the computer. On the 33

other hand, the lexicons, grammars, and semantics of programming languages are 34

much better understood than those of natural languages, because they have been 35

explicitly designed and sometimes even specified with mathematical rigor. It is 36

thus more practical to learn these first principles and apply them. 37

http://www.python.org/

PROGRAMMING FOR HUMANISTS 3

In these notes, I use both approaches, starting in this first part with the imitation38

method to get started and build some intuition and sense of what can be done, and39

then moving in the second part to the first principles that underly the language.40

During this part, the idea is to merely get you used to the idea of commanding the41

computer to carry out calculations. Don’t worry about the details of the language.42

Just let the code waft over you, like a pleasant sea breeze. Type the examples in43

and marvel at the results even if you can’t fully understand yet why they work.44

Learn the following important lessons from the exercise:45

(1) There’s nothing to fear here. You won’t damage your computer by typing the46

wrong thing. You can experiment. If you wonder “what would happen47

if”, just try it.48

(2) First principles are important. To really understand what’s going on, the49

zen-like approach of Part 1 is insufficient. If you’re motivated, move on to50

Part 2. Then go back to Part 1 afterwards and you’ll see how much better51

you understand what’s going on.52

4 STUART M. SHIEBER

1. Where we’re headed 53

The coverage of these notes is not sufficient to make you a proficient Python 54

programmer. They do not even provide a basic understanding of the full language. 55

But the notes should get you to the point of writing simple programs to do basic 56

text analyses. To get a sense of what can be achieved, by the end of working 57

through these notes you’ll have written code to generate a concordance of the text 58

in Figure 1 (page 31) as found in Appendix A. 59

You’ll also have enough familiarity with Python programming that it should 60

be a simpler transition to learning about and working with the Natural Language 61

Toolkit (NLTK), a free and open source Python toolkit for language processing that 62

comes with its own book Natural Language Processing with Python. 63

Like all skills, programming requires practice. You don’t get it by reading about 64

it but by doing it. I recommend that you do all of the exercises and problems in 65

these notes in order, even the ones that feel trivial, as well as playing around with 66

small problems and tasks of your own devising. 67

1.1. Conventions used in the notes. First mentions of key concepts are shown inkey concepts 68

small caps and marked in the margins. You’ll find them in the index at the end of 69

the notes as well. 70

The URLs provided in these notes, and some other items areclickable. Clickableclickable links 71

links appear like this. 72

There are exercises and problems interspersed throughout. The problems areexercises

problems

73

more difficult than the exercises. 74

� Advanced material that can be skipped on first reading is marked as 75

here. 76

1.2. Disclaimer. I apologize ahead of time for the rather breathless nature of these 77

notes. They go through things quickly, and may be incomplete in various ways. 78

You may (in fact likely will) have to augment them with reading in the Python 79

documentation. On the other hand, I’ll be available in class to answer questions, 80

so there’s that. 81

If you find errors or disfluencies in the notes, please let me know so that I can 82

correct them. 83

http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/
http://www.nltk.org/book/
http://www.vevo.com/watch/ledisi/like-this/USUV71401625

PROGRAMMING FOR HUMANISTS 5

2. Installing Python84

Go no further without getting access to a Python interpreter. You’ll want to try85

out the samples of Python code as they are presented and do your own experimen-86

tation as well.87

Mac OS: Python is available natively on Mac OS. From a window in the88

Terminal application, type “python”. The interpreter will be launched.89

Windows OS: Python executables for Windows can be downloaded from90

https://www.python.org/downloads/windows/. Good luck with that. In91

case of failure, see the section below on web-based Python interpreters.92

Linux: If you’re running Linux, you’re not going to need these notes.93

Web-based: On any operating system with a browser, you can set up an94

account at Pythonanywhere and run a Python interpreter from within your95

browser. This will get you started for now.96

>>> sys.version

’2.7.5 (default, Mar 9 2014, 22:15:05) \n[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)]’

>>> this_python_version

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’this_python_version’ is not defined

The material in these notes is sufficiently straightforward that it probably makes97

little difference which version of Python you are running. However, for concrete-98

ness, all the examples below were run with Python 2.7.5.99

Exercise 1. Obtain access to a Python interpreter via one of the methods above. �100

Exercise 2. Test that the Python interpreter is working by running it and typing in a101

simple command for the interpreter to execute. You should see something like this:102

% python

Python 2.7.2 (default, Oct 11 2012, 20:14:37)

[GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

Finished loading pythonrc file

>>> 1+1

2

>>>

�103

https://www.python.org/downloads/windows/
https://www.pythonanywhere.com/

6 STUART M. SHIEBER

3. The synoptic gospels 104

We’ll be looking primarily at text processing. Suppose we’re interested in the 105

synoptic gospels (and who isn’t?). Each gospel is a text, which we can think of as 106

a sequence of characters. Here, for instance, are the first four verses of the Gospel 107

of Mark, generated using Python by opening a file named Mark.txt containing the 108

Clementine Vulgate version of the Gospel of Mark, reading all of its lines into a list 109

of lines, and then extracting the first four items in that list: 110

>>> open(’Mark.txt’).readlines()[:4]

[’1:1 Initium Evangelii Jesu Christi, Filii Dei.\r\n’, ’1:2 Sicut scriptum est in Isaia propheta : [Ecce ego mitto angelum meum ante faciem tuam,/ qui praeparabit viam tuam ante te./\r\n’, ’1:3 Vox clamantis in deserto :/ Parate viam Domini, rectas facite semitas ejus.]\r\n’, ’1:4 Fuit Joannes in deserto baptizans, et praedicans baptismum poenitentiae in remissionem peccatorum.\r\n’]

Let’s give that list of lines a name. We’ll call it mark_lines. 111

>>> mark_lines = open(’Mark.txt’).readlines()

>>> mark_lines[:4]

[’1:1 Initium Evangelii Jesu Christi, Filii Dei.\r\n’, ’1:2 Sicut scriptum est in Isaia propheta : [Ecce ego mitto angelum meum ante faciem tuam,/ qui praeparabit viam tuam ante te./\r\n’, ’1:3 Vox clamantis in deserto :/ Parate viam Domini, rectas facite semitas ejus.]\r\n’, ’1:4 Fuit Joannes in deserto baptizans, et praedicans baptismum poenitentiae in remissionem peccatorum.\r\n’]

� Notice that the expression mark_lines[:4] has exactly the same 112

value as the previous expression open(’Mark.txt’).readlines()[:4]. 113

This fact can be seen as an instance of Leibniz’s law 114

of the indiscernability of identicals. The command 115

mark_lines = open(’Mark.txt’).readlines() has the effect of 116

making mark_lines identical to open(’Mark.txt’).readlines(). 117

Leibniz’s law means that we can “substitute equals for equals”. 118

By substituting mark_lines for open(’Mark.txt’).readlines() 119

in open(’Mark.txt’).readlines()[:4], we get the equivalent 120

mark_lines[:4]. 121

Viewing the list of lines that way isn’t too readable. Here’s a nicer presentation: 122

>>> for verse in mark_lines[:4]:

... print verse,

...

1:1 Initium Evangelii Jesu Christi, Filii Dei.

1:2 Sicut scriptum est in Isaia propheta : [Ecce ego mitto angelum meum ante faciem tuam,/ qui praeparabit viam tuam ante te./

1:3 Vox clamantis in deserto :/ Parate viam Domini, rectas facite semitas ejus.]

1:4 Fuit Joannes in deserto baptizans, et praedicans baptismum poenitentiae in remissionem peccatorum.

Exercise 3. If the text of Matthew is in the file named Matthew.txt, how would you 123

print out the first four verses of Matthew? The first six verses? � 124

Instead of a list of lines (verses), it might be useful to extract a list of words. 125

We’ll start by joining all of the lines together, separated by, say, a colon. 126

>>> mark_string = ’:’.join(mark_lines)

We can then take a look at the first few characters of this string. (Restricting to the 127

first few avoids the whole giant string running off the end of the page.) 128

PROGRAMMING FOR HUMANISTS 7

>>> mark_string[:60]

’1:1 Initium Evangelii Jesu Christi, Filii Dei.\r\n:1:2 Sicut s’

Exercise 4. What do you think the [:60] at the end does? Try substituting different129

numbers, like [:5] or [:100] and see what happens. �130

Solution. It extracts the first 60 characters of the string, which substring is then printed.
�

Exercise 5. Suppose instead that you wanted to join the lines together with a space instead131

of a colon. How would you do that? �132

Solution.

>>> mark_string = ’ ’.join(mark_lines)

>>> mark_string[:60]

’1:1 Initium Evangelii Jesu Christi, Filii Dei.\r\n 1:2 Sicut s’

�

Let’s simplify and normalize the text a bit, by making it all lowercase.133

>>> mark_lower = mark_string.lower()

>>> mark_lower[:60]

’1:1 initium evangelii jesu christi, filii dei.\r\n 1:2 sicut s’

Exercise 6. How would you assign the name mark_upper to the uppercased text of Mark?134

�135

Solution.

>>> mark_upper = mark_string.upper()

>>> mark_upper[:60]

’1:1 INITIUM EVANGELII JESU CHRISTI, FILII DEI.\r\n 1:2 SICUT S’

�

The next step in extracting the words is to get rid of a bunch of characters that136

we aren’t interested in – the chapter and verse markers for instance.137

>>> mark_simple = mark_lower.translate(None, ’0123456789:’)

>>> mark_simple[:60]

’ initium evangelii jesu christi, filii dei.\r\n sicut scriptu’

There are other characters we may want to remove, punctuation and newlines and138

such, so let’s redo the process with a broader set of characters to exclude.139

>>> mark_simple = mark_lower.translate(None, ’\n\r,.:;\\/)(?0123456789:’)

>>> mark_simple[:60]

’ initium evangelii jesu christi filii dei sicut scriptum es’

8 STUART M. SHIEBER

Finally, let’s get rid of any extraneous whitespace – the nonprinting layout charac- whitespace140

ters like spaces, tabs, and newlines – at the start and end of the string. 141

>>> mark_simple = mark_simple.strip()

>>> mark_simple[:60]

’initium evangelii jesu christi filii dei sicut scriptum est’

Now, we can split the string into the component words at the whitespace that 142

separate the words. 143

>>> mark_words = mark_simple.split()

>>> mark_words[:7]

[’initium’, ’evangelii’, ’jesu’, ’christi’, ’filii’, ’dei’, ’sicut’]

Let’s encapsulate this whole process of turning a file into the list of words by 144

defining a function that carries out that process. 145

>>> def words_normed(filename):

... return ’ ’.join(open(filename).readlines()) \

... .lower() \

... .translate(None, ’\n\r,.:;\\/[]()?0123456789’) \

... .strip() \

... .split()

...

� The backslashes at the end of each of the lines are there to notify 146

Python that the expression is not at that point finished, so that Python 147

provides the opportunity to type some more input. Without the back- 148

slashes, Python would have gone ahead and evaluated the expression 149

after the second line. 150

Now we can do that for several different documents. 151

>>> matthew = words_normed(’Matthew.txt’)

>>> mark = words_normed(’Mark.txt’)

>>> luke = words_normed(’Luke.txt’)

>>> john = words_normed(’John.txt’)

To make sure it worked, let’s look at the first few words of each. 152

>>> matthew[:7]

[’liber’, ’generationis’, ’jesu’, ’christi’, ’filii’, ’david’, ’filii’]

>>> mark[:7]

[’initium’, ’evangelii’, ’jesu’, ’christi’, ’filii’, ’dei’, ’sicut’]

>>> luke[:7]

[’quoniam’, ’quidem’, ’multi’, ’conati’, ’sunt’, ’ordinare’, ’narrationem’]

>>> john[:7]

[’in’, ’principio’, ’erat’, ’verbum’, ’et’, ’verbum’, ’erat’]

Let’s look at some contiguous word sequences from the gospels. Here’s the 153

third through fifth words in Mark. 154

PROGRAMMING FOR HUMANISTS 9

>>> mark[2:5]

[’jesu’, ’christi’, ’filii’]

(Even though we want the third through fifth words, we use the numeric indices155

2 and 5. You’ll see why later in Section 8.1.)156

How about generating a whole series of such three word sequences? Contiguous157

sequences of n words in a document are called n-grams; in the case where n is 3,158

they are called trigrams. Here are the first ten trigrams in Mark.159

>>> mark10trigrams = [mark[i:i+3] for i in range(10)]

>>> for trigram in mark10trigrams:

... print trigram

...

[’initium’, ’evangelii’, ’jesu’]

[’evangelii’, ’jesu’, ’christi’]

[’jesu’, ’christi’, ’filii’]

[’christi’, ’filii’, ’dei’]

[’filii’, ’dei’, ’sicut’]

[’dei’, ’sicut’, ’scriptum’]

[’sicut’, ’scriptum’, ’est’]

[’scriptum’, ’est’, ’in’]

[’est’, ’in’, ’isaia’]

[’in’, ’isaia’, ’propheta’]

We can define a process to generate a list of all of the trigrams in a list of words.160

>>> def ngrams(lst, N=3):

... return [lst[i:i+N] for i in range(len(lst)-N+1)]

...

� The argument specification N=3 means that the second argument161

named N is optional, and if it is not provided, a default value of 3 will be optional arguments162

used as its value. Thus ngrams by default computes trigrams, but can also163

be used to compute n-grams for other values of n if desired.164

Exercise 7. Why is the range limit len(lst)-N+1 rather than just len(lst)? What is165

the point of the extra arithmetic? Hint: Try it with just len(lst) and see what happens.166

�167

Solution. In a list of k items, there aren’t k n-grams, one starting at each item, because the
last few items in the list don’t have enough items following them to make up a full n-gram.
In fact, there are n− 1 of these leftover items. So the range of starting indices to use should
subtract off these n − 1 items; it should end at k − (n − 1), that is, k − n + 1, leading to the
-N+1 in the code. �

Let’s test it on Mark again, printing the first few trigrams found to verify that it168

worked.169

10 STUART M. SHIEBER

>>> mark_3grams = ngrams(mark)

>>> for trigram in mark_3grams[:5]:

... print trigram

...

[’initium’, ’evangelii’, ’jesu’]

[’evangelii’, ’jesu’, ’christi’]

[’jesu’, ’christi’, ’filii’]

[’christi’, ’filii’, ’dei’]

[’filii’, ’dei’, ’sicut’]

For completeness, we can generate the trigrams in the other gospels as well. 170

>>> matthew_3grams = ngrams(matthew)

>>> luke_3grams = ngrams(luke)

>>> john_3grams = ngrams(john)

One way to measure the similarity of two documents is to examine what trigrams 171

(or other n-grams) they have in common. We start by defining the intersection of 172

two lists, that is, the items they have in common: 173

>>> def intersect(list1, list2):

... return [item

... for item in list1

... if item in list2]

...

Now we can find all of the trigrams in common between Matthew and Mark: 174

>>> common_matthew_mark = intersect(matthew_3grams, mark_3grams)

>>> for common in common_matthew_mark[:5]:

... print common

...

[’jesu’, ’christi’, ’filii’]

[’quod’, ’est’, ’interpretatum’]

[’cum’, ’illo’, ’et’]

[’principes’, ’sacerdotum’, ’et’]

[’at’, ’illi’, ’dixerunt’]

How many such common trigrams are there? 175

>>> len(common_matthew_mark)

1906

That’s about 18 percent of the Mark trigrams. 176

Exercise 8. Knowing the raw count of common n-grams may not be as useful as knowing 177

the proportion of common n-grams. How can you calculate the proportion of the Mark 178

trigrams that are also found in Matthew? � 179

Solution. About 18 percent:

PROGRAMMING FOR HUMANISTS 11

>>> 100 * len(common_matthew_mark) / len(mark_3grams)

18

Python rounds to the nearest integer when performing integer arithmetic. To get more
precision, we can convert one of the terms from an integer to a floating point number:

>>> 100.0 * len(common_matthew_mark) / len(mark_3grams)

18.48152816833123

�

Is that a lot? We can compare it against the proportion of trigrams found in some180

other more or less unrelated Latin document. Let’s use the Vita Sancti Germani.181

>>> vsg_3grams = ngrams(words_normed(’vsg.txt’))

>>> len(intersect(mark_3grams, vsg_3grams))

13

The 13 common trigrams accounts for only 0.13 percent. So (unsurprisingly) Mark182

looks to be extremely similar to Matthew.183

Let’s make a table that shows how similar the gospels are to each other (at least184

as measured by common trigrams).185

>>> gospels = {’Matthew’: matthew_3grams,

... ’Mark’: mark_3grams,

... ’Luke’: luke_3grams,

... ’John’: john_3grams}

>>> N = 3

>>> for (g1, w1) in gospels.items():

... for (g2, w2) in gospels.items():

... print "{:10s} {:10s} {:10.3%}"\

... .format(g1, g2,

... float(len(intersect(w1, w2)))

... /(len(w1) - N + 1))

...

Matthew Matthew 100.012%

Matthew Luke 12.985%

Matthew John 2.586%

Matthew Mark 11.517%

Luke Matthew 11.351%

Luke Luke 100.011%

Luke John 2.206%

Luke Mark 7.553%

John Matthew 3.286%

John Luke 3.485%

John John 100.014%

John Mark 3.116%

12 STUART M. SHIEBER

Mark Matthew 17.127%

Mark Luke 12.220%

Mark John 3.065%

Mark Mark 100.019%

Exercise 9. Which of the gospels is the outlier? That is, which is the most different from 186

all the others? � 187

Solution. Again unsurprisingly, Matthew, Mark, and Luke are all relatively similar to
each other, with common trigrams percentages in the double digit percentages. John, on the
other hand, is quite different, sharing only a few percent of trigrams with the others. Still,
John has about ten times as many shared trigrams as the gospels do with the Vita Sancti
Germani. �

Exercise 10. What about common 5-grams? Generate the same table but for 5-grams. � 188

Solution. All that needs to change is the value for N.

>>> N = 5

>>> def common_grams(list1, list2, N=3):

... return intersect(ngrams(list1, N), ngrams(list2, N))

...

>>> for (g1, w1) in gospels.items():

... for (g2, w2) in gospels.items():

... print "{:10s} {:10s} {:10.3%}"\

... .format(g1, g2,

... float(len(common_grams(w1, w2, N)))

... /(len(w1) - N + 1))

...

Matthew Matthew 100.000%

Matthew Luke 2.538%

Matthew John 0.006%

Matthew Mark 1.988%

Luke Matthew 2.300%

Luke Luke 100.000%

Luke John 0.011%

Luke Mark 0.951%

John Matthew 0.007%

John Luke 0.014%

John John 100.000%

John Mark 0.028%

Mark Matthew 3.191%

Mark Luke 1.668%

PROGRAMMING FOR HUMANISTS 13

Mark John 0.039%

Mark Mark 100.000%

�

14 STUART M. SHIEBER

Part 2. Programming from first principles 189

The first part of these notes should have given you an idea of how even a few 190

lines of Python code can accomplish some serious textual analysis. But to really 191

understand how to program, so that you can generate effective code directly and 192

not merely program by analogy, you need to understand the first principles of the 193

programming language. In this part, we present some of these first principles for 194

Python in a graded manner with interspersed exercises. 195

PROGRAMMING FOR HUMANISTS 15

4. Python documentation196

These notes are not self-contained – on purpose. Python is a large language,197

with many built-in functions and add-on modules for doing all kinds of things.198

All are well documented at the python.org web site. You’ll want to get in the habit199

of heading there to look up aspects of the language that you need help with.200

Here are some especially important bits:201

• There is a tutorial on the language at https://docs.python.org/2/202

tutorial/index.html, which you may find complementary to these notes.203

It does assume a bit of programming background.204

• The language reference manual is at https://docs.python.org/2/205

reference/index.html.206

• The Python standard library and modules are described at https://docs.207

python.org/2/library/index.html. We use some of these below, for208

instance, standard functions like sorted and the pprint module.209

python.org
https://docs.python.org/2/tutorial/index.html
https://docs.python.org/2/tutorial/index.html
https://docs.python.org/2/tutorial/index.html
https://docs.python.org/2/reference/index.html
https://docs.python.org/2/reference/index.html
https://docs.python.org/2/reference/index.html
https://docs.python.org/2/library/index.html
https://docs.python.org/2/library/index.html
https://docs.python.org/2/library/index.html

16 STUART M. SHIEBER

5. The Python interpreter 210

A Python interpreter allows you to specify calculations as Python expressionsinterpreter 211

or programs and calculates the result of those specifications. You type Python 212

commands and expressions into the interpreter, and the interpreter executes the 213

commands and calculates the values of the expressions printing a representation 214

of the calculated values. 215

� We distinguish commands and expressions. Commands are executedcommand 216

for their side effects. Expressions are executed for their values (thoughexpression 217

they may have side effects as well). The difference is revealed by the inter- 218

preter: after entering a command, no output is printed by the interpreter; 219

after entering an expression, an output is printed, namely, the expression’s 220

value. 221

Here is a simple example of using a Python interpreter. The user’s input is 222

on the lines beginning ‘>>>’ (or ‘...’ for lines continuing a single input) and the 223

interpreter’s output immediately follows. 224

>>> 3 + 4 * 5

23

We’ve used the + symbol for addition and * for multiplication. You can find 225

a larger listing of arithmetic operators at https://en.wikibooks.org/wiki/ 226

Python_Programming/Basic_Math. 227

Exercise 11. Enter the expression 3 + 4 * 5 into the Python interpreter and verify that 228

it works like it should. � 229

Exercise 12. Use the Python interpreter to determine the values of the following arithmetic 230

expressions: 231

(1) 4/4 − 4/4 232

(2) 4+4
4+4 233

(3) 4·4
4+4 234

This exercise is inspired by the “four fours” puzzle, which involves constructing arithmetic 235

expressions for each positive integer using four fours combined however you want. Feel 236

free to generate more examples and use Python to verify them for you. � 237

Solution.

>>> 4/4 - 4/4

0

>>> (4 + 4) / (4 + 4)

1

>>> (4 * 4) / (4 + 4)

2

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math
https://en.wikibooks.org/wiki/Python_Programming/Basic_Math
https://en.wikibooks.org/wiki/Python_Programming/Basic_Math

PROGRAMMING FOR HUMANISTS 17

�

18 STUART M. SHIEBER

6. Expressions and nesting 238

One of the deep truths of linguistics, known since the time of Pān. ini in the fourth 239

century BCE, is that the expressions of language have hierarchical structure. The 240

recovery of that structure used to be a typical subject matter taught to students in 241

“grammar school” through the exercise of sentence diagramming. 242

For instance, in the sentence “Some new cakes are nice” (the first proposition 243

from Lewis Carroll’s The Game of Logic), the whole sentence is constituted of two 244

primary parts, marked here: 245

Some new cakes are nice 246

which parts in turn can, extending the structural hierarchy, be broken down further: 247

Some new cakes are nice 248

And of course, the meaning of the utterance is determined in part by that struc- 249

ture. This fact accounts for the humor (of a sort) found in structurally ambiguous 250

sentences: 251

I shot an elephant in my pajamas 252

I shot an elephant in my pajamas 253

Python expressions, like the utterances of natural language, have structure as 254

well. In the expression 3 + 4 * 5, there is a subexpression 4 * 5, but 3 + 4 is not 255

a subexpression. That is, the structure is 256

3 + 4 * 5 257

and not 258

3 + 4 * 5 259

Since 4 * 5 is 20, the whole expression is 23, and not 35. 260

Just as the hierarchical structure of a natural-language utterance is crucial to 261

deriving its meaning, so is the hierarchical structure of a Python expression crucial 262

to deriving its. 263

PROGRAMMING FOR HUMANISTS 19

7. Variables and the naming of values264

We can name the results of computations for later use. These names are called265

variables. Variables are tokens made up of alphabetic characters, digits, and the variables266

underscore (_), and not starting with a digit. By convention, variable names are267

typically composed of lowercase letters, using the underscore to separate “words”268

that make up the name.269

Exercise 13. Which of these are not valid variable names in Python?270

(1) matthew271

(2) sanctus_germanus272

(3) 1_samuel273

(4) __name__274

(5) n-grams275

�276

Solution. All but examples 3 and 5 are valid variable names in Python. �

Here’s an example of the use of a variable (large_square) to name a value and277

then using that value in later computations.278

>>> large_square = 128 ** 2

>>> large_square / 2

8192

The first line constitutes an assignment; it assigns the name given on the left side assignment279

of the = operator to the value specified by the expression on the right side. Thus280

the variable large_square names the value 16384. Assignments are executed for281

their effect, not their value. For that reason, the interpreter doesn’t print anything282

after this line. (Don’t be confused. The = does not mean “is equal to”, as it does in283

standard mathematical notation. It’s a kind of command, not a statement of fact.)284

The second line then uses that variable by dividing its value by 2. The interpreter285

prints the value specified by that last expression.286

20 STUART M. SHIEBER

8. Sequence data types 287

It is conventional in defining programming languages to carefully distinguish 288

the different types of data that programs can manipulate. We’ve seen one data 289

type already – numbers.data type 290

� In actuality, Python treats numbers as falling into a set of different 291

data subtypes: integers, real numbers, complex numbers, each of which 292

operates slightly differently. 293

Our primary application in these notes is analysis of text. We will therefore 294

move quickly to look at the data type most useful for representing text, namely, 295

strings. Strings are a kind of sequence data type; a string is essentially a sequence 296

of characters. In fact, Python provides several different data types for sequences: 297

strings of course, but also lists and tuples. These sequence data types share many 298

properties, so we introduce them together. 299

8.1. Lists. The Python list data type is used to represent sequences of other datalist 300

objects, sequences that can be adjusted in various ways, for instance, by adding or 301

removing elements. The notation for lists is to place the individual listed objects, 302

separated by commas and surrounded by brackets. 303

>>> [1, 2, 3]

[1, 2, 3]

>>> ex_list = [1, 4, 1, 5, 9, 2, 6]

>>> ex_list

[1, 4, 1, 5, 9, 2, 6]

Each item in a list has its own position in the list. The individual items within aposition 304

list can be extracted by indexing them based on their respective positions. We useindexing 305

the indexing notation ·[·]. For instance, to retrieve the fifth item from ex_list, we 306

use the notation ex_list[4]. 307

>>> ex_list[4]

9

Notice that the value of this expression is indeed the fifth item in the list, the 308

number 9. 309

Why use the index 4 for the fifth item? Because we think of the positions as 310

being numbered starting from index zero. Alternatively, you can think of the indices 311

as numbering the points between the items, starting with zero, like in this picture. 312

0
1

1
4

2
1

3
5

4
9

5
2

6
6

7 313

Under this conception, the indexing ex_list[4] extracts the item following position 314

4, that is, the fifth item. 315

PROGRAMMING FOR HUMANISTS 21

8.2. Sequence lengths. We may want to know how many items there are in one316

of these kinds of sequences. We use the len function to calculate the length of a len function317

list. (We’ll have much more to say about functions shortly, starting in Section 9.)318

>>> len(ex_list)

7

Since the length of a list is a number, you can operate on it as you would any319

other number, applying arithmetic operations to it for instance.320

>>> len(ex_list) * 2

14

8.3. Strings. We’ll use the string data type for representing text. Strings in Python string321

are specified by enclosing a sequence of characters within matching string delim-322

iters, such as single quotes. delimiters323

>>> ’sanctus Germanus’

’sanctus Germanus’

Strings can be specified with other delimiters, such as double quotes, or triple324

double or single quotes.325

>>> "This example uses double quotes"

’This example uses double quotes’

>>> """Triple quotes are

... often used for

... multi-line strings."""

’Triple quotes are\noften used for\nmulti-line strings.’

Note that Python always prints out the strings using the single quote delimiter.326

� This last string has some newline characters in it. They’re specified newline327

with the ’\n’ characters. See Section 12 below.328

Strings can be concatenated using the + operator.329

>>> "This" + ’ that’

’This that’

(We can freely combine strings specified with the different delimiters.)330

Like all data values, strings can be named by variables.331

>>> ex_string = " be as it were as it"

>>> "Let it" + ex_string * 2 + " were"

’Let it be as it were as it be as it were as it were’

Interesting how Python uses the “multiplication” operator * for repeating332

strings, no? This “arithmetic” on strings works for lists as well.333

>>> motto = ["nihil", "agere", "delectat"]

>>> motto

[’nihil’, ’agere’, ’delectat’]

22 STUART M. SHIEBER

>>> len(motto)

3

>>> motto + motto

[’nihil’, ’agere’, ’delectat’, ’nihil’, ’agere’, ’delectat’]

>>> len(motto * 2) - len(motto) * 2

0

>>> ex_string

’ be as it were as it’

>>> len(ex_string)

20

Exercise 14. What will Python print in response to each of the following inputs? 334

ex_list = ["agere", "delectat", "nihil"]

ex_list[2] + ex_list[0] + ex_list[1]

ex_list[2] + " " + ex_list[0] + " " + ex_list[1]

ex_list[1][1] + ex_list[2][2]

len(ex_list * 2) - len(ex_list) * 2

� 335

Solution. Python prints the following:

>>> ex_list = ["agere", "delectat", "nihil"]

>>> ex_list[2] + ex_list[0] + ex_list[1]

’nihilageredelectat’

>>> ex_list[2] + " " + ex_list[0] + " " + ex_list[1]

’nihil agere delectat’

>>> ex_list[1][1] + ex_list[2][2]

’eh’

>>> len(ex_list * 2) - len(ex_list) * 2

0

�

8.4. Substrings. Strings, like lists, are sequences – in particular, sequences of char- 336

acters. We can do many of the same operations on strings that we can on lists. 337

For instance, we can extract a character from a string using the same indexing 338

notation ·[·]. To retrieve the fifth character from ex_string, we use the notation 339

ex_string[4]. 340

>>> ex_string = "sanctus Germanus"

>>> ex_string[4]

’t’

PROGRAMMING FOR HUMANISTS 23

As before we think of the indices as numbering the points between the characters,341

starting with zero, like in this picture.342

0
s

1
a

2
n

3
c

4
t

5
u

6
s

y

8
G

9
e

10
r

11
m

12
a

13
n

14
u

15
s

16343

Under this conception, the indexing ex_string[4] extracts the character following344

string position 4, that is, the fifth character.345

Substrings can be specified by a slicingnotation, similar to the indexing notation slicing346

but providing both starting and ending positions within the full string, separated347

by a colon. For instance, to extract the substring between string positions 2 and 6348

(that is, the second through fifth characters):349

>>> ex_string[2:6]

’nctu’

Exercise 15. What strings are specified by the following Python expressions? Recall the350

value of ex_string defined above.351

(1) ex_string[0:3]352

(2) ex_string[3]353

(3) ex_string[3:4]354

(4) ex_string[3:3]355

(5) ex_string[3:2]356

(6) ex_string[:4]357

(7) ex_string[4:]358

(8) ex_string[4:-3]359

(9) ex_string[3:100]360

(10) ex_string[8:0:-1]361

(11) ex_string[::-1]362

We really haven’t given enough detail about how the indexing notation works to determine363

all of these, so you’ll have to experiment to figure them out. �364

Solution. Here’s what happens:

>>> ex_string[0:3]

’san’

>>> ex_string[3]

’c’

>>> ex_string[3:4]

’c’

>>> ex_string[3:3]

’’

>>> ex_string[3:2]

’’

24 STUART M. SHIEBER

>>> ex_string[:4]

’sanc’

>>> ex_string[4:]

’tus Germanus’

>>> ex_string[4:-3]

’tus Germa’

>>> ex_string[3:100]

’ctus Germanus’

>>> ex_string[8:0:-1]

’G sutcna’

>>> ex_string[::-1]

’sunamreG sutcnas’

�

Exercise 16. Based on your experiments with the previous exercise, how would you reverse 365

a string in Python, that is, generate a string with the characters in the reverse order? � 366

Exercise 17. This method that allows extracting substrings from strings also al- 367

lows extracting sublists from lists. Suppose the variable vsg_list names the value 368

[’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’]. How would you extract all 369

but the first and last elements from the list? � 370

Solution.

>>> vsg_list = [’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’]

>>> vsg_list[1:len(vsg_list)-1]

[’Germanus’, ’abba’, ’et’]

�

Exercise 18. How would you extract the final two elements from vsg_list, without 371

recourse to prior knowledge of the number of items in the list? � 372

Solution. Here are some methods:

>>> vsg_list[len(vsg_list)-2:len(vsg_list)]

[’et’, ’martyr’]

>>> vsg_list[len(vsg_list)-2:]

[’et’, ’martyr’]

>>> vsg_list[-2:]

[’et’, ’martyr’]

�

PROGRAMMING FOR HUMANISTS 25

8.5. Tuples. The final sequence data type we’ll cover is the tuple. The nametuple373

derives from the suffix seen in quintuple, sextuple, septuple, and the like.374

A tuple in Python is specified like a list, with multiple elements separated by375

commas, but without the surrounding brackets. It is conventional (though not376

always required) to use grouping parentheses around the elements of the tuple.377

Here are a list and its corresponding tuple:378

>>> [’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’]

[’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’]

>>> (’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’)

(’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’)

Lists can be converted to tuples using the tuple function, and tuples to lists using tuple function379

the list function. list function380

>>> vsg_list

[’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’]

>>> vsg_tuple = tuple(vsg_list)

>>> vsg_tuple

(’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’)

>>> list(vsg_tuple)

[’sanctus’, ’Germanus’, ’abba’, ’et’, ’martyr’]

Like lists, tuples can be indexed, sliced, and (as we’ll see later) iterated over.381

>>> vsg_tuple[2]

’abba’

>>> vsg_tuple[-2:]

(’et’, ’martyr’)

Since tuples and lists are so similar, why do both exist in the language? The382

distinction is a bit arcane. Lists are stored internally in such a way that they can be383

modified – items replaced, added, or removed. Tuples do not allow modification384

once created. Here’s an example of the difference:385

>>> vsg_list[2] = vsg_list[1]

>>> vsg_tuple[2] = vsg_tuple[1]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: ’tuple’ object does not support item assignment

The attempt to modify the tuple causes an error. Python won’t allow it.386

Data types that don’t allow values to be modified are termed hashable. (Num- hashable387

bers and strings are also hashable data types.) Tuples (and other hashable data388

types) are thus useful in contexts in which it is important that a data object never389

change. For instance, in storing information by associating it with a special “key”,390

it is important that the key not be changed; otherwise, the value associated with391

26 STUART M. SHIEBER

that key would become inaccessible. For that reason, keys are restricted to come 392

from hashable data types such as tuples, as we will see when looking at dictionaries 393

in Section 18. 394

� Since it is the comma operator separating the elements that makes 395

clear that a tuple is being specified, how do we specify a tuple of one 396

element, or even zero elements? The zero-element empty tuple is specifiedempty tuple 397

by parentheses enclosing nothing, (). A singleton tuple uses a trailingsingleton tuple 398

comma within the parentheses, for instance, (1,). 399

PROGRAMMING FOR HUMANISTS 27

9. Functions400

Data – numeric or string values, and all the other types of data that Python makes401

available – are manipulated through the application of functions, engines that take functions402

inputs, called arguments, and transform them into an output, the result. We’ve arguments

result

403

seen examples of such functions already: the arithmetic and string operators like404

+ and *, indexing operators like [:]. These are special built-in functions that are405

invoked via special “idiomatic” notations. The arithmetic operators, for instance,406

are written infix, as, e.g., 1 + 2, and the indexing operator is written with brackets.407

But in general, Python uses two notations that are more uniform for applying a408

function to its arguments.409

(1) Mathematical notation: Mimicking a traditionalmathematical notation the mathematical notation410

origin of which is attributed variously to Leibniz and Euler, a function,411

say f, applied to its arguments is notated by placing the comma-separated412

arguments after the function in parentheses, viz.,413

f(〈arg1〉, 〈arg2〉, ...) .414

(2) Object notation: A second notation, object notation, derived from conven- object notation415

tions used in so-called object-oriented programming languages, places the416

function after its first argument separated by a dot, with all other arguments417

following as in the mathematical notation, viz.,418

〈arg1〉.f(〈arg2〉, ...) .419

� The latter notation makes more sense once Python’s status as an420

object-oriented language is understood, but in the interest of introducing421

the least language for our purposes, we introduce it as just a fixed idiom.422

Any given function uses either the first or second notation, in much the same423

way that any given Latin verb inflects as per one of a small set of conjugations. You424

might think of functions that use the mathematical notation as “first conjugation”425

functions and those using object notation “second conjugation”.426

� There are actually further “conjugations”, for infix operators like the427

+ in 3 + 4 and prefix operators like the - in - 5. The operators specify428

functions, but they are not called using the mathematical notation, that429

is, +(3,4) or -(5) (though the latter will work by happenstance since the430

parenthesized part will be treated as a grouping construct, not as part of431

the function application syntax).432

As it turns out, Python makes available in the operator package equiv-433

alents to all such infix and prefix operators as regular functions called with434

the mathematical notation. For instance,435

28 STUART M. SHIEBER

>>> import operator

>>> 3 + 4

7

>>> operator.add(3, 4)

7

>>> - 5

-5

>>> operator.neg(5)

-5

An example of the mathematical notation is the built-in len function, whichlen function 436

takes a single argument and returns its length. It can be applied to any kind of list, 437

and in particular, to strings, for instance, 438

>>> len(ex_string)

16

Exercise 19. What are the values of the following Python expressions? 439

(1) ex_string[0:len(ex_string)] 440

(2) ex_string[1:len(ex_string)] 441

(3) ex_string[0:len(ex_string)-1] 442

Can you find simpler ways of getting the same values? � 443

Solution. The solution:

>>> ex_string[0:len(ex_string)]

’sanctus Germanus’

>>> ex_string[1:len(ex_string)]

’anctus Germanus’

>>> ex_string[0:len(ex_string)-1]

’sanctus Germanu’

�

Another useful function is the built-in sorted function, which takes a singlesorted function 444

argument representing a sequence (such as a list or string) and returns a corre- 445

sponding object representing the elements of its argument in sorted order. 446

>>> sorted([3, 1, 4, 1, 5])

[1, 1, 3, 4, 5]

Exercise 20. Recall the value of motto, which is [’nihil’, ’agere’, ’delectat’]. 447

What do the following Python expressions return? 448

(1) sorted(motto) 449

(2) sorted(motto[0]) 450

(3) sorted(motto)[0] 451

https://docs.python.org/2/library/functions.html?highlight=sorted#sorted

PROGRAMMING FOR HUMANISTS 29

�452

Solution. The solution:

>>> motto

[’nihil’, ’agere’, ’delectat’]

>>> sorted(motto)

[’agere’, ’delectat’, ’nihil’]

>>> sorted(motto[0])

[’h’, ’i’, ’i’, ’l’, ’n’]

>>> sorted(motto)[0]

’agere’

�

It is often useful to generate a list of sequential numbers. We’ll see use examples453

later. The range function serves that purpose. Its two arguments specify the start range function454

and end of the range; the included numbers are obtained by starting with the first,455

and incrementing repeatedly until the second number is reached (or surpassed). If456

the first argument is left off, it is assumed to be 0. If a third argument is added, it457

is taken to be the increment used between numbers.458

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1, 10, 2)

[1, 3, 5, 7, 9]

>>> range(10, 0, -1)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Exercise 21. Use the range function to generate the following lists:459

[10, 11, 12]

[10]

[2, 4, 6, 8]

[3, 2, 1, 0, -1, -2, -3]

[]

�460

Solution. Here’s one way:

>>> range(10, 13)

[10, 11, 12]

>>> range(10, 11)

[10]

30 STUART M. SHIEBER

>>> range(2, 10, 2)

[2, 4, 6, 8]

>>> range(3, -4, -1)

[3, 2, 1, 0, -1, -2, -3]

>>> range(1,1)

[]

�

As a final example, we consider the count function (which uses the objectcount function 461

notation), which counts the number of occurrences of its second argument as 462

elements of its first list argument. 463

>>> motto.count(’nihil’)

1

>>> motto.count(’ipsum’)

0

>>> motto[0].count(’i’)

2

PROGRAMMING FOR HUMANISTS 31

10. Words, types, and tokens464

As we turn to processing of text, some standard terminology about words is465

useful, starting with the word “word” itself. The question of what is a word is466

itself somewhat fraught. For the time being, we’ll just consider the words in a text467

to be the maximal sequences of alphabetic characters separated by whitespace.468

(As it turns out, this is an exceptionally poor definition, but sufficient for the time469

being.)470

We distinguish word types from word tokens. A text is made up of a series of471

word tokens. Each word token belongs to a word type. Consider the text corpus in tokens

type

472

Figure 1, a sentence from Gertrude Stein’s 1929 poem “An Acquaintance With De-473

scription” (Stein, 1929). This corpus has 225 word tokens (ignoring punctuation),474

which are instances of just eight word types (if we conflate upper and lower case).475

The eight types, in decreasing order of frequency, are: “be”, “to”, “it”, “sure”, “let”,476

“mine”, “when”, “is”. Each of these word types has several occurrences as tokens477

in the poem.478

Let it be when it is mine to be sure let it be when it is mine when it is mine
let it be to be sure when it is mine to be sure let it be let it be let it be to be
sure let it be to be sure when it is mine to be sure let it to be sure when it
is mine let it be to be sure let it be to be sure to be sure let it be to be sure
let it be to be sure to be sure let it be to be sure let it be to be sure let it be
to be sure let it be mine to be sure let it be to be sure to be mine to be sure
to be mine to be sure to be mine let it be to be mine let it be to be sure to
be mine to be sure let it be to be mine let it be to be sure let it be to be sure
to be sure let it to be sure mine to be sure let it be mine to let it be to be
sure to let it be mine when to be sure when to be sure to let it to be sure to
be mine.

Figure 1. A sentence from Stein’s “An Acquaintance with De-
scription” (1929).

32 STUART M. SHIEBER

11. Files 479

11.1. Strings from files. Typing in the kinds of long strings we’ll be analyzing, 480

entire books in some cases, is painful. Better to store the text in a text file and load 481

that file into Python. Let’s imagine that we have a file called “stein.txt” that 482

contains the line from Figure 1. We want to read that file into Python so that we 483

can operate with it. 484

We’ll use an idiom to get the contents of a text file into a variable. The idiom is 485

this: 486

〈variable〉 = open(〈filename〉).readlines()

We are using two different functions in this idiom, the open function, invoked using 487

the mathematical function notation, and the readlines function, invoked using 488

the object notation. The open function takes a single string as an argument, and 489

returns as value an object that designates the file with that name. The readlines 490

function’s first argument is a file designator (as returned by open), and since it takes 491

no further arguments, the parentheses for the remaining arguments are empty. The 492

function returns a list, each component of which is a string containing a line of the 493

file that was read in. 494

To read the Stein poem in, we can therefore use: 495

>>> stein_lines = open(’stein.txt’).readlines()

Now, let’s examine what we’ve read in. 496

� Instead of just evaluating (and having the interpreter print the value 497

of) stein, here we are “importing” a special “pretty-printing” facility, the 498

pprint function, to print the value of stein in a more attractive manner.pprint function 499

>>> from pprint import pprint

>>> pprint(stein_lines)

[’Let it be when it is mine to be sure let\n’,

’it be when it is mine when it is mine\n’,

’let it be to be sure when it is mine to\n’,

’be sure let it be let it be let it be to\n’,

’be sure let it be to be sure when it is\n’,

’mine to be sure let it to be sure when\n’,

’it is mine let it be to be sure let it\n’,

’be to be sure to be sure let it be to be\n’,

’sure let it be to be sure to be sure let\n’,

’it be to be sure let it be to be sure\n’,

’let it be to be sure let it be mine to\n’,

’be sure let it be to be sure to be mine\n’,

’to be sure to be mine to be sure to be\n’,

’mine let it be to be mine let it be to\n’,

https://docs.python.org/2/library/functions.html?highlight=open#open
https://docs.python.org/2/library/stdtypes.html#file.readlines

PROGRAMMING FOR HUMANISTS 33

’be sure to be mine to be sure let it be\n’,

’to be mine let it be to be sure let it\n’,

’be to be sure to be sure let it to be\n’,

’sure mine to be sure let it be mine to\n’,

’let it be to be sure to let it be mine\n’,

’when to be sure when to be sure to let\n’,

’it to be sure to be mine.\n’]

Exercise 22. Read into Python the contents of a text file for some document you are500

interested in. The Vita Sancti Germani comes to mind. �501

34 STUART M. SHIEBER

12. Special characters 502

Let’s examine the first line of the poem. 503

>>> stein_lines[0]

’Let it be when it is mine to be sure let\n’

It’s a string of 41 characters. 504

Exercise 23. How could you verify that length? Do it. � 505

Solution. To compute the length of the first line:

>>> len(stein_lines[0])

41

�

Exercise 24. Use Python to extract the last character from the first line of the poem. � 506

Solution. The most direct method to extract the last character is to compute the index of
the last character in the first line and extract the character at that index:

>>> stein_lines[0][len(stein_lines[0]) - 1]

’\n’

This method is inelegant in twice calculating stein_lines[0]. More “pythonic” is to
take advantage of negative indices:

>>> stein_lines[0][-1]

’\n’

�

The last character of the first line is the newline character, which unlike all the 507

“normal” characters, is notated with an escape sequence, a backslash followedescape sequence 508

by an n: ’\n’. There are other escape sequences, used for characters that are 509

otherwise hard to make clear in a printed representation, such as ’\t’ for the tab 510

character or ’\’’ for the single quote character (which is otherwise hard to put in 511

a single-quoted string without prematurely terminating the string. 512

Exercise 25. How would you notate the single-quoted string containing the possessive 513

form of your first name? � 514

Solution. Here’s how I would do it, with single-quoted and double-quoted strings:

>>> ’Stuart\’s’

"Stuart’s"

>>> "Stuart’s"

"Stuart’s"

�

PROGRAMMING FOR HUMANISTS 35

13. Splitting and joining strings515

We introduce some useful string manipulation functions. To concatenate to-516

gether a list of strings to form a single string, use the join function that takes a join function517

separator string and a list of strings to join and combines the strings in the list518

together separated by the separator string.519

>>> ’ ’.join([’sanctus’, ’Germanus’])

’sanctus Germanus’

Exercise 26. Use join to generate the following strings from the list of number strings520

[’1’, ’2’, ’3’].521

(1) ’1-2-3’522

(2) ’1, 2, 3’523

(3) ’123’524

(4) ’3, 2, 1’525

For the last problem, recall Exercise 16. For further extra credit, start from the list of526

numbers themselves [1, 2, 3]. Check out the functions map and str. �527

Solution. This solution starts with the number list, converting it first to the number
string list, thereby solving both parts of the exercise.

>>> numbers = [1, 2, 3]

>>> numbers = map(str, numbers)

>>> numbers

[’1’, ’2’, ’3’]

>>> ’-’.join(numbers)

’1-2-3’

>>> ’, ’.join(numbers)

’1, 2, 3’

>>> ’’.join(numbers)

’123’

>>> ’, ’.join(numbers[::-1])

’3, 2, 1’

�

The converse of the join function is the split function. Again, split takes two split function528

arguments in object notation. The first is the string to be split up into substrings529

and the second is a string that specifies where to split. Each occurrence of the530

second string in the first string generates a split point. To split at the spaces in the531

string, then, the second argument would be the string ’ ’:532

>>> line = "He told me you had been to her and mentioned me to him"

>>> line.split(’ ’)[0:5]

[’He’, ’told’, ’me’, ’you’, ’had’]

36 STUART M. SHIEBER

The splitting can occur at any substring we want: 533

>>> line.split(’ me ’)

[’He told’, ’you had been to her and mentioned’, ’to him’]

Exercise 27. Extra credit: What is this line from? � 534

Exercise 28. Use Python’s lower function (inter alia) to generate the list of word tokenslower function 535

in line but with all words in lower case. Step one: Click on the link in this exercise to go 536

to the Python documentation on the lower function. While you’re there, look around at 537

the range of other string-processing functions that may come in handy some day. � 538

Solution.

>>> pprint(line.lower().split(’ ’))

[’he’,

’told’,

’me’,

’you’,

’had’,

’been’,

’to’,

’her’,

’and’,

’mentioned’,

’me’,

’to’,

’him’]

�

Exercise 29. Use Python to split the first line of Stein’s poem into its separate word tokens, 539

storing the resulting list of tokens in the variable stein_words1. � 540

Solution.

>>> stein_words1 = stein_lines[0].strip().split(’ ’)

>>> pprint(stein_words1)

[’Let’, ’it’, ’be’, ’when’, ’it’, ’is’, ’mine’, ’to’, ’be’, ’sure’, ’let’]

�

https://docs.python.org/2/library/stdtypes.html#str.lower
https://docs.python.org/2/library/stdtypes.html#string-methods

PROGRAMMING FOR HUMANISTS 37

14. List comprehensions541

We’ve seen the notation for specifying a list extensionally, that is, by enumer- extensional542

ating its elements explicitly. Here for instance are the first letters of the first few543

words (the first eight, say) in the first line of the Stein poem, enumerated explicitly:544

>>> first_letters = [’L’, ’i’, ’b’, ’w’, ’i’, ’i’, ’m’, ’t’]

>>> first_letters

[’L’, ’i’, ’b’, ’w’, ’i’, ’i’, ’m’, ’t’]

It’s much more elegant and less error-prone to let Python do the work for you.545

We use list comprehensions for the task. List comprehensions allow specifying list comprehensions546

a single generic list element computation that captures all of the elements of the547

list. It allows defining lists intensionally rather than extensionally. The list intensional548

comprehension notation is549

[〈generic element〉 for 〈variable〉 in 〈list〉] .550

� For the mathematically inclined, it may be useful to think of this551

notation as analogous to the familiar mathematical notation for defining552

sets intensionally, for example,553

{ x2
| 0 ≤ x < 10 }554

which defines the set containing the first 10 squares. The braces become555

brackets in Python, and the vertical bar becomes the word for, which556

separates the generic element x2 on its left from the specification of the557

possible values of x on its right.558

For the current example, each element of the list can be calculated as word[0]559

where word is one of the first few words in the first line of the poem. (Recall that560

the words in the first few lines in the poem are named by the variable stein_words561

from Exercise 29.)562

>>> first_letters = [word[0] for word in stein_words1[0:8]]

>>> first_letters

[’L’, ’i’, ’b’, ’w’, ’i’, ’i’, ’m’, ’t’]

Here, the variable word takes on each element of the list stein_words[0:8], and563

for each one, an element of the list is computed as word[0].564

Exercise 30. Generate a list each element of which is a list of all of the word tokens in a565

line of the Stein poem. �566

Solution.

>>> line_words = [line.strip().split(’ ’) for line in stein_lines]

>>> pprint(line_words[0:3])

[[’Let’, ’it’, ’be’, ’when’, ’it’, ’is’, ’mine’, ’to’, ’be’, ’sure’, ’let’],

38 STUART M. SHIEBER

[’it’, ’be’, ’when’, ’it’, ’is’, ’mine’, ’when’, ’it’, ’is’, ’mine’],

[’let’, ’it’, ’be’, ’to’, ’be’, ’sure’, ’when’, ’it’, ’is’, ’mine’, ’to’]]

�

Exercise 31. Generate a list named stein_words of all the word tokens in the Stein poem. 567

Make sure that all the words are lower case. You may find the strip function to be useful.strip function 568

You should be able to get the following behavior: 569

>>> stein_words[6:12]

[’mine’, ’to’, ’be’, ’sure’, ’let’, ’it’]

� 570

Solution.

>>> stein_words = ’ ’.join([line.lower().strip(’\n .’)

... for line in stein_lines]).split(’ ’)

>>> stein_words[6:12]

[’mine’, ’to’, ’be’, ’sure’, ’let’, ’it’]

�

Exercise 32. Generate a list of the first 10 squares (0, 1, 4, 9, etc.). Hint: You’ll want to 571

recall the range function. � 572

Solution.

>>> [x**2 for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

�

PROGRAMMING FOR HUMANISTS 39

15. Sets573

Time to introduce another data type, the set. A set is a compound data type; set574

like the list, each set contains elements. But the elements of a set are unique. A set575

does not contain multiple tokens of the same value. You can create a set from a list576

with the set function. set function577

>>> set([1, 2, 3])

set([1, 2, 3])

>>> set([1, 2, 3, 2, 1])

set([1, 2, 3])

>>> set(’it was the best of times it was the worst of times’.split(’ ’))

set([’of’, ’it’, ’times’, ’worst’, ’the’, ’was’, ’best’])

As you can see, the printed representation for a set shows a list of the elements but578

still marks it as a set.579

Many of the same functions that apply to lists apply to sets as well: len for580

counting the number of elements, + for combining two sets (taking their union), union581

etc.582

Exercise 33. Use Python to calculate how many word types (not tokens) there are in the583

Stein poem. Ignore case distinctions. Hint: The answer is 8. The hint is to emphasize that584

the point of the exercise is the code, not the answer. �585

Solution.

>>> len(set(stein_words))

8

�

� The elements of a set can be of many types – numbers, strings, and586

tuples, in particular – but unfortunately not lists or sets. Only hashable587

data types are allowed.588

40 STUART M. SHIEBER

16. Calculating with n-grams 589

We’ll spend some time looking at n-grams, contiguous sequences of n words.n-grams 590

When n is 1, 2, or 3, we call them unigrams, bigrams, and trigrams, respectively.unigram

bigram

trigram

591

Here are some examples of trigrams built from the vocabulary seen in Gertrude 592

Stein’s poem: 593

(1) let it be 594

(2) it is mine 595

(3) it is sure 596

(4) to be sure 597

Problem 34. Generate a list of all of the trigram tokens in the Stein poem. You’ll want to 598

use the word list you generated in Exercise 31. � 599

Solution.

>>> N = 3

>>> stein_ngrams = [stein_words[i:i+N]

... for i in range(len(stein_words)-N+1)]

>>> pprint(stein_ngrams[:4])

[[’let’, ’it’, ’be’],

[’it’, ’be’, ’when’],

[’be’, ’when’, ’it’],

[’when’, ’it’, ’is’]]

�

Problem 35. How many times do each of the four sample trigrams above occur in the 600

poem? If you resort to counting them yourself, go back to the beginning of these notes and 601

start over. � 602

Solution.

>>> [stein_ngrams.count(probe.split(’ ’)) for probe in

... [’let it be’, ’it is mine’, ’it is sure’, ’to be sure’]]

[24, 6, 0, 31]

�

Exercise 36. How many unique trigrams are there in the Stein poem? (You may want to 603

look at the earlier discussion about hashable data types.) � 604

Solution.

>>> len(set([’ ’.join(ngram) for ngram in stein_ngrams]))

37

�

PROGRAMMING FOR HUMANISTS 41

17. Defining your own functions605

Functions like len, sorted, count, and the like can be fabulously useful. If606

there’s a function that does just what you need, a single line of code can accomplish607

your purposes.608

Sadly, there often is not a function tailor-made for your purposes. But you can609

write your own. Indeed, writing functions is the heart of computer programming610

(in spite of the fact that it took until page 41 to get to the topic).611

In Python, you can define your own function of zero or more arguments using612

the def command. The notation is as follows: def command613

def 〈function name〉(〈arguments〉):
〈function body〉

Within the body of the function, the return command generates the value to return return command614

as the result of the function.615

For example, here we define a function to calculate the first letter of a string.616

>>> def first_letter(ex_string):

... return ex_string[0]

...

We can use this function by calling it just as we would a built-in function using function call617

mathematical notation:618

>>> first_letter(’nihil’)

’n’

>>> first_letter(stein_lines[0])

’L’

Exercise 37. Define and test a function that returns the last letter of the first word in a619

string. �620

Solution.

>>> def last_of_first(ex_string):

... return ex_string.split(’ ’)[0][-1]

...

>>> last_of_first("He told me you had been to her")

’e’

�

Exercise 38. Define and test a function that returns the reversal of a string or list. �621

Solution.>>> def reverse(ex_list):

... return ex_list[::-1]

42 STUART M. SHIEBER

...

>>> reverse(motto)

[’delectat’, ’agere’, ’nihil’]

>>> reverse(motto[0])

’lihin’

�

Exercise 39. Define and test a function that returns the alphabetically first word in a 622

string. � 623

Solution.

>>> def lex_first_word(ex_string):

... return sorted(ex_string.split(’ ’))[0]

...

>>> lex_first_word("a b c d")

’a’

>>> lex_first_word("c b a d")

’a’

>>> lex_first_word("single")

’single’

>>> lex_first_word("")

’’

>>> lex_first_word("he told me you had been to her")

’been’

�

Exercise 40. Define and test a function that returns the middle element of a list, that is, 624

the element that has the same number of elements before and after it. (If the list has an even 625

number of elements, the chosen element should have one more element before than after.) � 626

Solution.

>>> def mid_word(ex_list):

... return ex_list[len(ex_list)/2]

...

>>> mid_word([1, 2, 3, 4, 5])

3

>>> mid_word([1, 2, 3, 4])

3

>>> mid_word([1])

1

>>> mid_word([])

PROGRAMMING FOR HUMANISTS 43

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in mid_word

IndexError: list index out of range

�

Exercise 41. Define and test a function that returns a list of all the trigram tokens in a627

list of tokens. For instance, it should have the following behavior:628

>>> pprint(ngrams(motto * 2))

[(’nihil’, ’agere’, ’delectat’),

(’agere’, ’delectat’, ’nihil’),

(’delectat’, ’nihil’, ’agere’),

(’nihil’, ’agere’, ’delectat’)]

Test it on the Stein poem. �629

Solution.

>>> def ngrams(items, N=3):

... return [tuple(items[i:i+N]) for i in range(len(items)-N+1)]

...

>>> pprint(ngrams(stein_words)[:10])

[(’let’, ’it’, ’be’),

(’it’, ’be’, ’when’),

(’be’, ’when’, ’it’),

(’when’, ’it’, ’is’),

(’it’, ’is’, ’mine’),

(’is’, ’mine’, ’to’),

(’mine’, ’to’, ’be’),

(’to’, ’be’, ’sure’),

(’be’, ’sure’, ’let’),

(’sure’, ’let’, ’it’)]

>>> len(ngrams(stein_words))

223

This version uses Python’s ability to have optional arguments with defaults (the argument
N for the n-gram length). The code can thus be used to generate lists of n-grams of other
lengths.

>>> pprint(ngrams(stein_words, 5)[:10])

[(’let’, ’it’, ’be’, ’when’, ’it’),

(’it’, ’be’, ’when’, ’it’, ’is’),

(’be’, ’when’, ’it’, ’is’, ’mine’),

(’when’, ’it’, ’is’, ’mine’, ’to’),

(’it’, ’is’, ’mine’, ’to’, ’be’),

44 STUART M. SHIEBER

(’is’, ’mine’, ’to’, ’be’, ’sure’),

(’mine’, ’to’, ’be’, ’sure’, ’let’),

(’to’, ’be’, ’sure’, ’let’, ’it’),

(’be’, ’sure’, ’let’, ’it’, ’be’),

(’sure’, ’let’, ’it’, ’be’, ’when’)]

�

Exercise 42. Define and test a function that returns a set of all trigram types in a list of 630

tokens. For instance, it should have the following behavior: 631

>>> pprint(ngram_set(motto * 2))

set([(’agere’, ’delectat’, ’nihil’),

(’delectat’, ’nihil’, ’agere’),

(’nihil’, ’agere’, ’delectat’)])

Test it on the first line of the Stein poem. � 632

Solution.

>>> def ngram_set(items, N=3):

... return set(ngrams(items, N))

...

>>> pprint(ngram_set(stein_words))

set([(’be’, ’let’, ’it’),

(’be’, ’mine’, ’let’),

(’be’, ’mine’, ’to’),

(’be’, ’mine’, ’when’),

(’be’, ’sure’, ’let’),

(’be’, ’sure’, ’mine’),

(’be’, ’sure’, ’to’),

(’be’, ’sure’, ’when’),

(’be’, ’to’, ’be’),

(’be’, ’when’, ’it’),

(’is’, ’mine’, ’let’),

(’is’, ’mine’, ’to’),

(’is’, ’mine’, ’when’),

(’it’, ’be’, ’let’),

(’it’, ’be’, ’mine’),

(’it’, ’be’, ’to’),

(’it’, ’be’, ’when’),

(’it’, ’is’, ’mine’),

(’it’, ’to’, ’be’),

(’let’, ’it’, ’be’),

(’let’, ’it’, ’to’),

PROGRAMMING FOR HUMANISTS 45

(’mine’, ’let’, ’it’),

(’mine’, ’to’, ’be’),

(’mine’, ’to’, ’let’),

(’mine’, ’when’, ’it’),

(’mine’, ’when’, ’to’),

(’sure’, ’let’, ’it’),

(’sure’, ’mine’, ’to’),

(’sure’, ’to’, ’be’),

(’sure’, ’to’, ’let’),

(’sure’, ’when’, ’it’),

(’sure’, ’when’, ’to’),

(’to’, ’be’, ’mine’),

(’to’, ’be’, ’sure’),

(’to’, ’let’, ’it’),

(’when’, ’it’, ’is’),

(’when’, ’to’, ’be’)])

�

46 STUART M. SHIEBER

18. Dictionaries 633

A dictionary is a data structure for associating one kind of data with another.dictionary 634

We might want to associate words with their locations in a document, or n-grams 635

with their number of occurrences, or any of a variety of other associations. 636

In Python, a dictionary can be specified extensionally using a notation with 637

braces. Here, we build a dictionary that associates a few words with their length. 638

>>> lengths = { ’the’: 3, ’a’: 1, ’is’: 2, ’an’: 3 }

>>> lengths

{’a’: 1, ’the’: 3, ’is’: 2, ’an’: 3}

Notice that when the dictionary is printed, the association between keys (the words)keys 639

and their values (the lengths) is preserved, but the order of presentation is not.values 640

Dictionaries are important for the association, not the ordering. (That’s what lists 641

are for.) 642

The value for a given key can be recovered using the indexing notation we’ve 643

already used, but now we’re indexing not by numeric positions but by keys to 644

retrieve the corresponding values. 645

>>> lengths[’the’]

3

>>> lengths[’an’]

3

>>> lengths[’some’]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: ’some’

You may have noticed a problem with the lengths list: One of the values is 646

wrong. That’s what you get when building things extensionally. Better to build 647

the dictionary intensionally. First, we build a list of pairs of words and their lengths 648

using a list comprehension. 649

>>> len_list = [(word, len(word)) for word in [’the’, ’a’, ’is’, ’an’]]

>>> len_list

[(’the’, 3), (’a’, 1), (’is’, 2), (’an’, 2)]

Then we convert this list of pairs into a dictionary using the dict function.dict function 650

>>> len_dict = dict(len_list)

>>> len_dict[’the’]

3

>>> len_dict[’an’]

2

>>> len_dict[’some’]

Traceback (most recent call last):

PROGRAMMING FOR HUMANISTS 47

File "<stdin>", line 1, in <module>

KeyError: ’some’

Exercise 43. Build a dictionary named first_letters of words and their first letters.651

The word types should be taken from the Stein poem. The result should look like this:652

>>> first_letters

{’be’: ’b’, ’sure’: ’s’, ’is’: ’i’, ’when’: ’w’, ’it’: ’i’, ’mine’: ’m’, ’to’: ’t’, ’let’: ’l’}

�653

Solution.

>>> first_letters = dict([(word, word[0]) for word in stein_words])

>>> first_letters

{’be’: ’b’, ’sure’: ’s’, ’is’: ’i’, ’when’: ’w’, ’it’: ’i’, ’mine’: ’m’, ’to’: ’t’, ’let’: ’l’}

�

There are a few additional functions for manipulating dictionaries that may654

prove useful. The keys function returns a list of all of the keys defined in a keys function655

dictionary656

>>> first_letters.keys()

[’be’, ’sure’, ’is’, ’when’, ’it’, ’mine’, ’to’, ’let’]

and the values function returns a list of all of the values in a dictionary. values function657

>>> first_letters.values()

[’b’, ’s’, ’i’, ’w’, ’i’, ’m’, ’t’, ’l’]

Finally, the items function returns a list of key-value pairs from the dictionary. items function658

>>> first_letters.items()

[(’be’, ’b’), (’sure’, ’s’), (’is’, ’i’), (’when’, ’w’), (’it’, ’i’), (’mine’, ’m’), (’to’, ’t’), (’let’, ’l’)]

48 STUART M. SHIEBER

19. Loops and conditionals 659

It’s now page 48, and I’ve postponed as long as possible a discussion of the kind 660

of control structures that many people think of as the hallmark of computer pro- 661

gramming, such constructs as loops and conditionals. The style of programming 662

I’ve been implicitly using – a kind of functional programming over compound 663

data structures – eschews these kinds of structures. But for the next steps, we’ll 664

need to use them a bit. 665

The for loop allows executing a block of code several times, once for each valuefor loop 666

that a certain variable takes on. The notation is as follows: 667

for 〈variable〉 in 〈list or set or other iterable data〉:
〈body〉

For example, 668

>>> for letter in ’sanctus’:

... print letter

...

s

a

n

c

t

u

s

Note the indentation. It is crucial. Python uses indentation to convey theindentation 669

structure of the program. What constitutes the body of a for loop, for instance, 670

is exactly the sequence of textual lines that follow the first line and that are in- 671

dented more deeply. Similarly for other constructs in the language. Indentation is 672

important; pay attention to it. 673

The print command (it’s not a function) used above, when executed, has theprint command 674

side effect of presenting the printed representation of the comma-separated items 675

following it (they’re not really arguments) to the screen. I’ve used it inside the loop 676

so that we can see what’s happening inside the loop. 677

The conditional allows different code to be executed depending on whether aconditional 678

particular condition holds or not. We test the condition, and if it holds execute one 679

branch of the conditional, otherwise executing the other branch. 680

if 〈condition〉:
〈true branch〉

else:

〈false branch〉

PROGRAMMING FOR HUMANISTS 49

� The else: and 〈else branch〉 can be dropped if nothing needs to be681

done in case the condition is false.682

Here’s an (admittedly artificial) example:683

>>> occurs = {}

>>> for letter in ’sanctus’:

... if letter in ’Germanus’:

... occurs[letter] = True

... else:

... occurs[letter] = False

...

>>> occurs

{’a’: True, ’c’: False, ’n’: True, ’s’: True, ’u’: True, ’t’: False}

Exercise 44. What does this snippet of code do? �684

Solution. It tells us which letters in the string ‘sanctus’ are also in the string ‘Germanus’.
Apparently, the two have several letters in common, in fact all of the letters in ‘sanctus’
except for ‘c’ and ‘t’. �

What kinds of expressions can be in the test part of a conditional? Any expres-685

sion whose value is a truth value, or Boolean. The Boolean data type contains just Boolean686

two values: True and False. (In the above snippet, the values in the dictionary687

were also Booleans.) There are several functions that return Boolean values. Here688

are just a few:689

• x in y: Returns True just in case the value x is one of the values in the list, in function690

set, or other iterable data object y. Otherwise, it returns False.691

• x == y: Returns True just in case x and y are the same value. == function692

• x < y: Returns True just in case the value x is less than the value y un- < function693

der whatever ordering is appropriate for their data type (numerically for694

numbers, lexicographically for strings).695

• x and y: Returns True just in case both x and y have the value True. and function696

There are many other built-in functions that return Booleans, and of course you697

can define your own.698

� The Boolean data type is named after George Boole, whose work on699

what is now called Boolean algebra provided a mathematical basis for a700

logic of truth and falsity.701

Exercise 45. Define and test a function is_palindrome that returns a Boolean: True if702

its argument is a palindromic string, and False otherwise. �703

50 STUART M. SHIEBER

Solution. A solution that takes advantage of thereverse function provided in the solution
to Exercise 38:

>>> def is_palindrome(ex_list):

... return ex_list == reverse(ex_list)

...

>>> is_palindrome(’radar’)

True

>>> is_palindrome(’radio’)

False

�

Exercise 46. Define and test a function print_palindromes that prints all of the words 704

in its list argument that are palindromes, one palindrome per line. � 705

Solution.

>>> def print_palindromes(ex_list):

... for item in ex_list:

... if is_palindrome(item):

... print item

...

>>> print_palindromes([’madam’, ’i\’m’, ’adam’, ’radar’])

madam

radar

�

Exercise 47. Define and test a function common_letters that takes two string arguments 706

and returns a string containing all of the letters that its two arguments have in common. 707

Demonstrate it on the two strings ’disproportionableness’ and ’absolutism’. 708

Hint: The answer is ’isotabl’. � 709

Solution.

>>> def common_letters(s1, s2):

... common = ’’

... for letter in s1:

... if letter in s2 and not letter in common:

... common = common + letter

... return common

...

>>> common_letters(’disproportionableness’, ’absolutism’)

’isotabl’

PROGRAMMING FOR HUMANISTS 51

�

A useful idiom is to loop over all of the key-value pairs in a dictionary by taking710

advantage of the fact that the items function returns an iterable list:711

>>> for (key, value) in first_letters.items():

... print key, "has first letter", value

...

be has first letter b

sure has first letter s

is has first letter i

when has first letter w

it has first letter i

mine has first letter m

to has first letter t

let has first letter l

52 STUART M. SHIEBER

20. A concordance 712

In this section, you’ll put together code to generate a simple keyword-in-context 713

(KWIC) concordance, which lists for each word in a text all of the contexts in which 714

it occurs. 715

Recall the dictionary you built in Exercise 43. This dictionary associates each 716

word with its first letter. Of course, in a traditional dictionary (in the nontechnical 717

sense of the word ‘dictionary’), the association is the other way around: Each letter 718

is associated with a list of the words that it is the first letter of. We could generate 719

such a dictionary from the one we already built if we had a way of “inverting” 720

dictionaries. Such a dictionary inverter will turn out to be useful for other tasks as 721

well. 722

Problem 48. Write a function that takes a dictionary as its argument and returns a new 723

dictionary that is the “inversion” of its argument. The keys in the new dictionary are the 724

values in the original, and the values for a key x is the list of all keys in the original whose 725

value in the original was x. � 726

Solution.

>>> def invert_dict(a_dict):

... new_dict = {}

... for (k, v) in a_dict.iteritems():

... if v in new_dict.keys():

... new_dict[v] = new_dict[v] + [k]

... else:

... new_dict[v] = [k]

... return new_dict

...

�

If you’ve done this problem properly, you should get the following behavior: 727

>>> pprint(invert_dict(first_letters))

{’b’: [’be’],

’i’: [’is’, ’it’],

’l’: [’let’],

’m’: [’mine’],

’s’: [’sure’],

’t’: [’to’],

’w’: [’when’]}

We’ve turned our first_letters dictionary into a dictionary in the conventional 728

sense, a mapping from letters to words they start with. 729

Now a slightly more sophisticated case. 730

PROGRAMMING FOR HUMANISTS 53

Problem 49. Generate a dictionary that for a given list of words (the words in the Stein731

poem, say) associates each position or index with the word at that index. The dictionary732

should associate the number 0 with ’let’ (because the Stein poem has the word ’let’ at index733

0), the number 1 with ’it’, and so forth. Then invert the dictionary. The inverted dictionary734

will map words to a list of positions where that word occurs – a concordance! �735

Solution.

>>> wordsbyposition = \

... dict([(i, stein_words[i])

... for i in range(0, len(stein_words)-1)])

>>> wordsbyposition[5]

’is’

>>> invert_dict(wordsbyposition)

{’be’: [2, 8, 12, 23, 25, 32, 36, 39, 42, 44, 48, 50, 57, 62, 70, 72, 76, 78, 81, 85, 87, 91, 93, 96, 100, 102, 106, 108, 112, 114, 118, 121, 125, 127, 130, 133, 136, 139, 142, 146, 148, 152, 154, 157, 160, 164, 166, 170, 172, 176, 178, 181, 186, 190, 194, 199, 201, 206, 210, 214, 220, 223], ’sure’: [9, 26, 33, 45, 51, 58, 63, 73, 79, 82, 88, 94, 97, 103, 109, 115, 122, 128, 134, 140, 155, 161, 173, 179, 182, 187, 191, 202, 211, 215, 221], ’is’: [5, 15, 19, 29, 54, 66], ’when’: [3, 13, 17, 27, 52, 64, 208, 212], ’it’: [1, 4, 11, 14, 18, 22, 28, 35, 38, 41, 47, 53, 60, 65, 69, 75, 84, 90, 99, 105, 111, 117, 124, 145, 151, 163, 169, 175, 184, 193, 198, 205, 218], ’mine’: [6, 16, 20, 30, 55, 67, 119, 131, 137, 143, 149, 158, 167, 188, 195, 207], ’to’: [7, 24, 31, 43, 49, 56, 61, 71, 77, 80, 86, 92, 95, 101, 107, 113, 120, 126, 129, 132, 135, 138, 141, 147, 153, 156, 159, 165, 171, 177, 180, 185, 189, 196, 200, 203, 209, 213, 216, 219, 222], ’let’: [0, 10, 21, 34, 37, 40, 46, 59, 68, 74, 83, 89, 98, 104, 110, 116, 123, 144, 150, 162, 168, 174, 183, 192, 197, 204, 217]}

� The backslash at the end of the first line tells Python that the line has been
split across multiple lines. No backslash is needed on the second line as it is clear
from the unclosed open bracket and indentation that the list comprehension has
not been completed.

�

Finally, we can keep track not only of the index of each word, but also its context,736

the few words surrounding it.737

Problem 50. Choose an appropriate dictionary structure that, when inverted, associates738

with each word a list of pairs. Each pair has an index and a surrounding n-gram at that739

position. Create such a dictionary and invert it. Write some code to print out the contents740

of that dictionary in a nice format. The output of such a concordance generator operating741

on the Stein poem can be found in Appendix A. �742

Solution.

>>> N = 5

>>> midwords = dict([((i, tuple(stein_words[i - N/2: i + N/2 + 1])),

... stein_words[i])

... for i in range(N/2, len(stein_words) - N - 1)])

>>> concordance = invert_dict(midwords)

>>> def print_concordance(concordance):

... for (k, v) in concordance.iteritems():

... print "{}:".format(k)

... for (pos, context) in v:

54 STUART M. SHIEBER

... print "{:8d} -- {}".format(pos, " ".join(context))

...

See Appendix A for the result of executing

print_concordance(concordance)

�

PROGRAMMING FOR HUMANISTS 55

Appendix A. A concordance with description743

>>> print_concordance(concordance)

be:

91 -- let it be to be

139 -- mine to be sure to

210 -- when to be sure when

136 -- sure to be mine to

57 -- mine to be sure let

72 -- be to be sure let

201 -- be to be sure to

2 -- let it be when it

62 -- it to be sure when

114 -- be to be sure let

121 -- mine to be sure let

108 -- be to be sure let

125 -- let it be to be

93 -- be to be sure to

25 -- be to be sure when

152 -- let it be to be

81 -- sure to be sure let

100 -- let it be to be

160 -- mine to be sure let

194 -- let it be mine to

190 -- mine to be sure let

70 -- let it be to be

148 -- be to be mine let

50 -- be to be sure when

76 -- let it be to be

170 -- let it be to be

78 -- be to be sure to

87 -- be to be sure let

214 -- when to be sure to

32 -- mine to be sure let

176 -- let it be to be

199 -- let it be to be

172 -- be to be sure let

118 -- let it be mine to

39 -- let it be let it

146 -- let it be to be

133 -- mine to be sure to

96 -- sure to be sure let

130 -- sure to be mine to

56 STUART M. SHIEBER

42 -- let it be to be

8 -- mine to be sure let

12 -- let it be when it

154 -- be to be sure to

157 -- sure to be mine to

127 -- be to be sure to

178 -- be to be sure to

48 -- let it be to be

102 -- be to be sure let

142 -- sure to be mine let

106 -- let it be to be

44 -- be to be sure let

186 -- it to be sure mine

166 -- be to be mine let

36 -- let it be let it

181 -- sure to be sure let

164 -- let it be to be

206 -- let it be mine when

112 -- let it be to be

85 -- let it be to be

23 -- let it be to be

sure:

211 -- to be sure when to

33 -- to be sure let it

115 -- to be sure let it

73 -- to be sure let it

9 -- to be sure let it

128 -- to be sure to be

103 -- to be sure let it

97 -- to be sure let it

82 -- to be sure let it

134 -- to be sure to be

179 -- to be sure to be

122 -- to be sure let it

182 -- to be sure let it

58 -- to be sure let it

215 -- to be sure to let

88 -- to be sure let it

187 -- to be sure mine to

94 -- to be sure to be

63 -- to be sure when it

140 -- to be sure to be

PROGRAMMING FOR HUMANISTS 57

79 -- to be sure to be

161 -- to be sure let it

26 -- to be sure when it

109 -- to be sure let it

173 -- to be sure let it

51 -- to be sure when it

155 -- to be sure to be

191 -- to be sure let it

45 -- to be sure let it

202 -- to be sure to let

is:

66 -- when it is mine let

19 -- when it is mine let

54 -- when it is mine to

5 -- when it is mine to

29 -- when it is mine to

15 -- when it is mine when

when:

208 -- be mine when to be

212 -- be sure when to be

13 -- it be when it is

17 -- is mine when it is

3 -- it be when it is

64 -- be sure when it is

27 -- be sure when it is

52 -- be sure when it is

it:

14 -- be when it is mine

47 -- sure let it be to

99 -- sure let it be to

69 -- mine let it be to

60 -- sure let it to be

184 -- sure let it to be

90 -- sure let it be to

175 -- sure let it be to

193 -- sure let it be mine

38 -- be let it be let

11 -- sure let it be when

205 -- to let it be mine

18 -- mine when it is mine

75 -- sure let it be to

105 -- sure let it be to

58 STUART M. SHIEBER

111 -- sure let it be to

163 -- sure let it be to

169 -- mine let it be to

35 -- sure let it be let

84 -- sure let it be to

4 -- be when it is mine

117 -- sure let it be mine

198 -- to let it be to

28 -- sure when it is mine

41 -- be let it be to

124 -- sure let it be to

65 -- sure when it is mine

151 -- mine let it be to

22 -- mine let it be to

218 -- to let it to be

53 -- sure when it is mine

145 -- mine let it be to

mine:

67 -- it is mine let it

137 -- to be mine to be

188 -- be sure mine to be

119 -- it be mine to be

30 -- it is mine to be

131 -- to be mine to be

6 -- it is mine to be

167 -- to be mine let it

195 -- it be mine to let

158 -- to be mine to be

207 -- it be mine when to

55 -- it is mine to be

143 -- to be mine let it

16 -- it is mine when it

20 -- it is mine let it

149 -- to be mine let it

to:

141 -- be sure to be mine

159 -- be mine to be sure

135 -- be sure to be mine

31 -- is mine to be sure

171 -- it be to be sure

61 -- let it to be sure

129 -- be sure to be mine

PROGRAMMING FOR HUMANISTS 59

189 -- sure mine to be sure

95 -- be sure to be sure

138 -- be mine to be sure

56 -- is mine to be sure

24 -- it be to be sure

209 -- mine when to be sure

203 -- be sure to let it

49 -- it be to be sure

156 -- be sure to be mine

86 -- it be to be sure

113 -- it be to be sure

71 -- it be to be sure

165 -- it be to be mine

7 -- is mine to be sure

147 -- it be to be mine

177 -- it be to be sure

92 -- it be to be sure

185 -- let it to be sure

200 -- it be to be sure

180 -- be sure to be sure

132 -- be mine to be sure

216 -- be sure to let it

126 -- it be to be sure

101 -- it be to be sure

213 -- sure when to be sure

43 -- it be to be sure

80 -- be sure to be sure

120 -- be mine to be sure

77 -- it be to be sure

196 -- be mine to let it

153 -- it be to be sure

107 -- it be to be sure

let:

10 -- be sure let it be

168 -- be mine let it be

40 -- it be let it be

150 -- be mine let it be

34 -- be sure let it be

110 -- be sure let it be

197 -- mine to let it be

37 -- it be let it be

144 -- be mine let it be

60 STUART M. SHIEBER

83 -- be sure let it be

116 -- be sure let it be

74 -- be sure let it be

46 -- be sure let it be

174 -- be sure let it be

68 -- is mine let it be

123 -- be sure let it be

204 -- sure to let it be

104 -- be sure let it be

21 -- is mine let it be

183 -- be sure let it to

59 -- be sure let it to

89 -- be sure let it be

162 -- be sure let it be

217 -- sure to let it to

98 -- be sure let it be

192 -- be sure let it be

PROGRAMMING FOR HUMANISTS 61

Appendix B. Statistics744

Running time of included Python examples: 249.44 seconds.745

62 STUART M. SHIEBER

References 746

Gertrude Stein. An Acquaintance with Description. Seizin Press, 1929. URL http: 747

//books.google.com/books?id=YpFuQgAACAAJ. 748

http://books.google.com/books?id=YpFuQgAACAAJ
http://books.google.com/books?id=YpFuQgAACAAJ
http://books.google.com/books?id=YpFuQgAACAAJ

Index

< function, 49

= operator, see assignment

== function, 49

addition, 16

and function, 49

arguments, 27

arithmetic operators, 16

assignment, 19

bigram, 40

Boolean, 49

Carroll, Lewis, 18

clickable links, 4

command, 16

def, 41

for, 48

if, 48

print, 48

return, 41

conditional, 48

count function, 30

data type, 20

def command, 41

delimiters, 21

dict function, 46

dictionary, 46

empty tuple, 26

escape sequence, 34

Euler, Leonhard, 27

exercises, 4

expression, 16

extensional, 37

False value, 49

first principles, 2

for loop, 48

four fours, 16

function

<, 49

==, 49

and, 49

count, 30

dict, 46

in, 49

items, 47

join, 35

keys, 47

len, 21, 28

list, 25

lower, 36

pprint, 32

range, 29

set, 39

sorted, 28

split, 35

strip, 38

tuple, 25

values, 47

function call, 41

functions, 27

hashable, 25

if command, 48

imitation, 2

in function, 49

indentation, 48

indexing, 20

intensional, 37

interpreter, 16

items function, 47

join function, 35

key concepts, 4

keys, 46

keys function, 47

Leibniz, Gottfried, 27

len function, 21, 28

list, 20

list comprehensions, 37

list function, 25

lower function, 36

Marx, Groucho, 18

mathematical notation, 27

multiplication, 16
63

64 STUART M. SHIEBER

n-grams, 40

newline, 21

object notation, 27

optional arguments, 9

position, 20

pprint function, 32

print command, 48

problems, 4

range function, 29

result, 27

return command, 41

set, 39

set function, 39

singleton tuple, 26

slicing, 23

sorted function, 28

split function, 35

Stein, Gertrude, 31

string, 21

strip function, 38

tokens, 31

trigram, 40

True value, 49

tuple, 25

empty, 26

singleton, 26

tuple function, 25

type, 31

unigram, 40

union, 39

values, 46

values function, 47

variables, 19

whitespace, 8

PROGRAMMING FOR HUMANISTS 65

School of Engineering and Applied Sciences, Harvard University

	Part 1. Programming by imitation
	1. Where we're headed
	2. Installing Python
	3. The synoptic gospels

	Part 2. Programming from first principles
	4. Python documentation
	5. The Python interpreter
	6. Expressions and nesting
	7. Variables and the naming of values
	8. Sequence data types
	9. Functions
	10. Words, types, and tokens
	11. Files
	12. Special characters
	13. Splitting and joining strings
	14. List comprehensions
	15. Sets
	16. Calculating with n-grams
	17. Defining your own functions
	18. Dictionaries
	19. Loops and conditionals
	20. A concordance
	Appendix A. A concordance with description
	Appendix B. Statistics
	References
	Index

